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Uniform asymptotic and JWKB expansions for anharmonic
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GabrielÁlvarez and Carmen Casares
Departamento de Fı́sica Téorica II, Facultad de Ciencias Fı́sicas, Universidad Complutense,
28040 Madrid, Spain

Received 6 January 2000

Abstract. We show explicitly the relation between the uniform asymptotic and the Jeffreys–
Wentzel–Kramers–Brillouin (JWKB) wavefunctions, and between the matching of uniform
asymptotic expansions and the complete JWKB connection formulae written in terms of Stokes
multipliers and loop integrals. As an application we give a unified derivation of the asymptotic
behaviour of the imaginary part of the resonances in anharmonic oscillators and, via dispersion
relations, the corresponding asymptotic behaviour of the Rayleigh–Schrödinger perturbation theory
coefficients.

1. Introduction

Matching of uniform asymptotic expansions is one of the standard methods to derive Jeffreys–
Wentzel–Kramers–Brillouin (JWKB) connection formulae [1]. In its simplest version, the
uniform asymptotic expansions around turning points are interpreted in the sense of Poincaré, in
which there is no analytic criterion to retain subdominant terms, although it may be numerically
convenient to do so (see, for example, pp 76–78 in [2]). The resulting connection formulae have
been discussed extensively by Olver [2] and Fröman and Fr̈oman [3], who derived rigorous
bounds for the truncation error and studied several examples and generalizations.

Silverstone [4], however, supplemented the matching method with the Borel summability
of the underlying asymptotic expansions of confluent hypergeometric functions [5], and
obtained ‘complete’ connection formulae in which the correct subdominant terms are identified
and interpreted unambiguously. That is to say, the Borel-summable asymptotic solutions of
the Schr̈odinger equation are encodings of the same exact solution in different regions of
the complex plane separated by Stokes lines, and the complete connection formulae specify
the relation between these expansions. For numerical purposes, a finite number of terms
of the expansion in any particular region are used to calculate an approximation to the
Borel sum via Pad́e approximants or conformal transformations, not by partial summation.
(Classically forbidden regions are instances of Stokes lines, where the Borel-summable
asymptotic expansions may change discontinuously; the evaluation of the function on a Stokes
line has to be done by continuity from the appropriate Borel-summable expansions on either
side of the line.)

In fact, following an idea of Balian and Bloch [6], Voros [7] studied the analytic structure
of the Borel transform with respect to ¯h−1 of the JWKB wavefunctions, arriving at an
equivalent form of the complete connection formulae. This procedure was later reformulated
in geometrical terms, extended and applied to several examples by Delabaereet al [8–11].
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Our purpose in this paper is to show explicitly the relation between the uniform and JWKB
wavefunctions, and between the matching of expansions and the connection formulae in terms
of Stokes multipliers and JWKB loop integrals (analytic Voros symbols, in the terminology
of [8–11]) for the Schr̈odinger equation for perturbed harmonic oscillators

− 1
2ψ
′′(x) + ( 1

2x
2 − gxp − E)ψ(x) = 0 (1)

wherep > 2 is an integer. Ifp is even, we look for even and odd purely outgoing (or ingoing)
solutions both at plus and minus infinity; ifp is odd, we look for solutions that are exponentially
decreasing at minus infinity and purely outgoing (or ingoing) at plus infinity. (Due to these
different boundary conditions and the corresponding Stokes graphs, we will discuss first the
case ofp odd, and point out later the modifications required forp even.) We mention that
in the cases ofp = 3 and 4 there are explicit expressions of the Stokes multipliers [12] as
convergent series whose terms are functions of the coefficients of the polynomial potential
(g andE in our notation), but these series are very slowly convergent and not well suited to
solve the stated eigenvalue problem, which requires, as we do in this paper, more sophisticated
methods ultimately based on comparison with the Weber and Airy equations.

As a simple consequence of our results we also obtain a unified derivation of the asymptotic
behaviour of the imaginary part of the resonances asg→ 0 and, via dispersion relations, the
asymptotic behaviour of the Rayleigh–Schrödinger perturbation theory (RSPT) coefficients
for these anharmonic oscillators. This general equation includes as particular instances the
recent results of Bender and Dunne [13] for the cubic anharmonic oscillator and the results for
quartic, sextic and octic oscillators quoted by Ivanov [14,15].

The layout of the paper is as follows: in sections 2 and 3 we build uniform expansions
around the origin and around the outer turning point respectively; in section 4 we discuss the
matching of these asymptotic expansions, the leading-order solution to the matching condition,
and the imaginary part of the resonances; in section 5 we discuss the modifications required
for p even; section 6 is devoted to clarify the relation between the uniform asymptotic and the
JWKB expansions, and the paper ends with a brief summary.

2. Uniform expansion around the origin for p odd

We do not work directly with equation (1), but scale the independent variable by

x = h−1/2z (2)

where

g = 1
2h

p/2−1. (3)

Thus we get a scaled Schrödinger equation

−h2ψ ′′(z) + (z2 − zp − 2hE)ψ(z) = 0 (4)

with an unperturbed double turning point at the origin and an unperturbed simple turning point
fixed atz = 1 (and a symmetric partner atz = −1 if p is even).

We build a uniform asymptotic expansion toψ(z) around the double-turning point at
the origin following the method of Langer [16], Cherry [17], Lynn and Keller [18], and
Silverstoneet al [19]. The comparison equation will be Weber’s differential equation [20],
and the solution with appropriate asymptotic behaviour (see section 4) is the parabolic cylinder
functionDν−1/2(z). Therefore we write

ψ(z) = [u′(z)]−1/2Dν−1/2

[
−
(

2

h

)1/2

u(z)

]
(5)
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which gives the following equation foru(z):

u(z)2u′(z)2 = z2 − zp − 2h[E − νu′(z)2] +
h2

2
{u, z} (6)

where{u, z} is the Schwarzian derivative,

{u, z} = u′′′(z)
u′(z)

− 3

2

(
u′′(z)
u′(z)

)2

. (7)

Next we substitute the asymptotic expansions

u(z) =
∞∑
k=0

uk(z)h
k (8)

E =
∞∑
k=0

E(k)(ν)( 1
2h

p/2−1)k (9)

into equation (6) and equate powers ofh to obtain a system of differential equations whose
first two members are

u0(z)u
′
0(z) = (z2 − zp)1/2 (10)

u0(z)u
′
1(z) + u′0(z)u1(z) = − E(0)(ν)

u0(z)u
′
0(z)

+ ν
u′0(z)
u0(z)

. (11)

We integrate these equations recursively and fix the coefficientsE(k)(ν) by the requirement
thatuk(z) be regular at the origin [17]. Equation (10) can be integrated in terms of the Gauss
hypergeometric function [20]

u0(z)
2 = 2

∫ z

0
(s2 − sp)1/2 ds = z2F(− 1

2, q; q + 1; z2/q) (12)

where we have defined

q = 2

(p − 2)
. (13)

To integrate equation (11) we note that∫
ds

(s2 − sp)1/2 =
q

2
ln

1− (1− s2/q)1/2

1 + (1− s2/q)1/2
(14)

∼ −q ln 2 + lns +
q

4
s2/q + · · · . (15)

Therefore, we avoid the logarithmic singularity inu1(z) by setting

E(0)(ν) = ν (16)

and get

u0(z)u1(z) = ν

2
ln[u0(z)

2] − qν
2

ln
1− (1− z2/q)1/2

1 + (1− z2/q)1/2
− qν ln 2. (17)

Carrying on this procedure, we find out that the coefficientsE(k)(ν) are polynomials inν
with rational coefficients, the first few of which are shown in table 1. We advance that these
polynomials have precisely the form of the RSPT coefficients when expressed as polynomials
in n+ 1

2, except that they are now functions of the as yet unspecified parameterν. An elementary
parity argument shows that forp odd the odd RSPT coefficientsE(2k+1)(ν) vanish, but we keep
the generic notation (9) that can also be used forp even. We also mention that Caliceti [21] has
recently proved rigorously that, in appropriate regions of the coupling constant plane, these
RSPT series are Borel summable to the resonances.
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Table 1. Lowest RSPT coefficientsE(k)(ν) as polynomials inν.

p −E(1)(ν) −E(2)(ν) −E(3)(ν) −E(4)(ν)

3 0
7

16
+

15

4
ν2 0

1155

64
ν +

705

16
ν3

4
3

8
+

3

2
ν2 67

16
ν +

17

4
ν3 1539

256
+

1707

32
ν2 305141

1024
ν +

89165

128
ν3

+
375

16
ν4 +

10689

64
ν5

5 0
1107

256
+

1085

32
ν2 0

115763715

8192
ν +

90794795

2048
ν3

+
315

16
ν4 +

13519905

512
ν5 +

494385

128
ν7

6
25

8
ν +

5

2
ν3 19277

256
ν +

4145

32
ν3 11719955

2048
ν +

7364155

512
ν3 224719341733

262144
ν +

44111182385

16384
ν3

+
393

16
ν5 +

735945

128
ν5 +

14745

32
ν7 +

12791269491

8192
ν5 +

264832005

1024
ν7

+
11451165

1024
ν9

3. Uniform expansion around the outer turning point

The uniform expansion around the outer turning point atz = 1 is built following the same
steps, except that the appropriate comparison equation is Airy’s differential equation [20], and
the solution with appropriate asymptotic behaviour (see again section 4) is the Airy function
Ai (±)(z) = Bi(z)± i Ai (z). Therefore we set

ψ(z) = [v′(z)]−1/2Ai (±)[h−2/3v(z)] (18)

into the Schr̈odinger equation (4), and obtain the equation forv(z),

v(z)v′(z)2 = z2 − zp − h2E +
h2

2
{v, z}. (19)

Substitution of the asymptotic series for the wavefunction

v(z) =
∞∑
k=0

vk(z)h
k (20)

and for the energy (9) into (19) leads to a system whose first two equations are

v0(z)v
′
0(z)

2 = z2 − zp (21)

v1(z)v
′
0(z)

2 + 2v0(z)v
′
0(z)v

′
1(z) = −2ν. (22)

Again, we integrate these equations recursively, and the sameE(k)(ν) determined in the
previous section free thevk(z) of singularities atz = 1. For later reference, we quote the
corresponding solutions:

v0(z)
3/2 = 3

2

∫ 1

z

(s2 − sp)1/2 ds (23)

= q

2
(1− z2/q)3/2F(1− q, 3

2; 5
2; 1− z2/q) (24)

= 3
4qB(q,

3
2)− 3

4z
2F(− 1

2, q; 1 +q; z2/q) (25)

v0(z)
1/2v1(z) = νq

2
ln

1− (1− z2/q)1/2

1 + (1− z2/q)1/2
(26)

whereB(q, 3
2) in equation (25) denotes Euler’s beta function.
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Figure 1. Stokes graphs for the scaled Schrödinger equation (4) with: (a) p = 3 and 2hE = 1/10;
(b) p = 3 and 2hE = 1/10 − i/20; (c) p = 5 and 2hE = 1/10; and (d) p = 5 and
2hE = 1/10− i/20.

4. Direct matching of the asymptotic expansions

4.1. Matching region

In figures 1(a) and (c) we show the Stokes graphs for equation (4) with real 2hE = 1
10

andp = 3 and 5, where the ‘under the barrier’ classically forbidden matching region is a
finite Stokes line. These patterns are resolved into Stokes graphs with only infinite Stokes
lines as soon as the constant term 2hE acquires a nonzero imaginary part—we illustrate this
case in figures 1(b) and (d), where 2hE = 1

10 − i
20 and the real axis can be taken as the

matching path. (The imaginary part in the eigenvalue problem is in fact exponentially small
ash→ 0; the value of Im(2hE) in the figure is sufficiently large to show clearly the splitting
but sufficiently small to avoid the first change in the topology of the Stokes graphs.) We will
match the Borel-summable asymptotic expansions of the parabolic cylinder-based and Airy-
based wavefunctions following this point of view. The required asymptotic expansions can be
easily derived from the general results for confluent hypergeometric functions in [5], and can
be conveniently written in terms of the formal generalized hypergeometric series

2F0(a1, a2; ; z) =
∞∑
k=0

(a1)k(a2)k
zk

k!
(27)

where(a)k denotes the Pochhammer symbol:(a)0 = 1, (a)k = a(a + 1) · · · (a + k − 1).
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4.2. Asymptotic expansions at the origin

The Borel-summable asymptotic expansions for the parabolic cylinder functions in the relevant
sectors of the complex plane are

Dν−1/2(z) ∼ zν−1/2e−z
2/4

2F0(
1
4 − ν

2,
3
4 − ν

2; ;−2z−2) (− 1
2π < argz < 1

2π) (28)

Dν−1/2(ze
∓iπ ) ∼ (2π)1/2

0( 1
2 − ν)

z−ν−1/2ez
2/4

2F0(
1
4 + ν

2,
3
4 + ν

2; ;2z−2)

±ie∓iνπzν−1/2e−z
2/4

2F0(
1
4 − ν

2,
3
4 − ν

2; ;−2z−2)

(0< ± argz < 1
2π). (29)

As we anticipated in section 2, equation (28) shows that the uniform wavefunction (5)
is exponentially decreasing along the negative real axis, while in the matching region
u(z) ∼ z > 0 with sgn[Im(−(2/h)1/2u(z))] = sgn[Imh], and equation (29) shows that (5)
is a linear combination of an exponentially increasing term and an exponentially decreasing
(subdominant) term uniquely defined via Borel summability.

4.3. Asymptotic expansions at the outer turning point

Similarly, the Borel-summable asymptotic expansions for the Airy functions in the relevant
sectors are

Ai (±)(z) ∼ π−1/2z−1/4e
2
3z

3/2

2F0(
1
6,

5
6; ; 3

4z
−3/2) (− 4

3π < ± argz < 0) (30)

Ai (±)(z) ∼ π−1/2z−1/4[e
2
3z

3/2

2F0(
1
6,

5
6; ; 3

4z
−3/2)

± ie−
2
3z

3/2

2F0(
1
6,

5
6; ;− 3

4z
−3/2)] (0< ± argz < 2

3π). (31)

As we anticipated in section 3, equation (30) shows that the uniform wavefunction (18)
represents a purely outgoing wave along (slightly above or below) the positive real axis.

4.4. Formal matching

First note that for−qπ < argh < 0 the matching is trivial because the first term in equation (29)
must vanish, i.e. the argument of the gamma function must be zero or a negative integer, and
we obtain

ν = n + 1
2 (n = 0, 1, 2, . . .). (32)

For sufficiently small argh > 0 we implement the matching by equating the ratios of the
dominant to the subdominant terms in the two uniform asymptotic expansions (29) and (31)
valid in the matching region [19], i.e. we get the indexν as the solution of

0( 1
2 − ν)

(2π)1/2ei(ν+1)π

[
2u(z)2

h

]ν
exp

[
−u(z)

2

h

]
2F0(

1
4 − ν

2,
3
4 − ν

2; ;−hu(z)−2)

2F0(
1
4 + ν

2,
3
4 + ν

2; ;hu(z)−2)

= exp

[
4v(z)3/2

3h

]
2F0(

1
6,

5
6; ; 3

4hv(z)
−3/2)

2F0(
1
6,

5
6; ;− 3

4hv(z)
−3/2)

. (33)

To put this equation in a more convenient form, we use the gamma function reflection formula

0( 1
2 + ν)0( 1

2 − ν) =
π

cos(πν)
(34)
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and define a new function

f (ν) = (2π)1/2

0(ν + 1
2)

exp

[
− u(z)

2

h
+ ν ln

(
2u(z)2

h

)
+ ln

2F0(
1
4 − ν

2,
3
4 − ν

2; ;−hu(z)−2)

2F0(
1
4 + ν

2,
3
4 + ν

2; ;hu(z)−2)

−4v(z)3/2

3h
+ ln

2F0(
1
6,

5
6; ;− 3

4hv(z)
−3/2)

2F0(
1
6,

5
6; ; 3

4hv(z)
−3/2)

]
. (35)

Note that after substitution of the expansions (8) and (20) into equation (35), all thez-dependent
terms in the matching process cancel, leaving only the dependence inν (and, of course, inq
andh), and the general oddp matching condition (33) can be written as follows:

f (ν) = eiπ (ei2πν + 1). (36)

4.5. Leading behaviour and lowest-order solution

Substituting equations (12), (17), (25) and (26) into equation (35) and pulling out the leading-
order terms, we find that

f (ν) = (2π)1/222qν

0(ν + 1
2)

(
2

h

)ν
exp

[
− qB(q,

3
2)

h
−
∞∑
k=1

f (k)(ν)hk
]

(37)

or as a function of the unscaled coupling constantg,

f (ν) = (2π)1/22ν

0(ν + 1
2)

(
2

g

)qν
exp

[
− qB(q,

3
2)

(2g)q
−
∞∑
k=1

c(k)(ν)gk
]

(38)

where thec(k)(ν)are polynomials inν determined by the higher terms in the matching condition.
These polynomials can be calculated explicitly for any value ofp, and the first few are shown
in table 2. Furthermore, equation (37) shows thatf (ν) is an exponentially small function of
h, and the matching condition (36) can be put in a form suitable for iterative solution. We set

ν = n + 1
2 +1ν (n = 0, 1, 2, . . .) (39)

into equation (36) to get the equivalent equation

1ν = 1

2π i
ln

[
1 +f

(
n +

1

2
+1ν

)]
. (40)

Keeping only the first term in the Taylor expansion of the logarithm, we find that the lowest-
(first exponentially small) order solution to the matching condition (36) is

1ν ∼ 1

2π i
f

(
n +

1

2

)
. (41)

4.6. Asymptotic behaviour of the resonances

To obtain the asymptotic behaviour of the imaginary part of the resonances, we first substitute
equation (32) into (9). The result in terms of the unscaled coupling constantg is

E(g) ∼
∞∑
k=0

E(k)(n + 1
2)g

k (42)

readily identified as the Borel summable RSPT (note that, with our choice of the Hamiltonian,
for g in the negative imaginary axis we have the typical alternating sign pattern of the Borel-
summable series with real Borel sum [21]). Similarly, substituting equations (39) and (41)
into equation (9) and expanding to first order in1ν we get

E(g) ∼
∞∑
k=0

E(k)
(
n +

1

2

)
gk +1ν

∞∑
k=0

dE(k)

dν

(
n +

1

2

)
gk + O(1ν2). (43)
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Table 2. Lowestc(k)(ν) coefficients in the expression off (ν) (equation (38)) as polynomials inν.

p c(1)(ν) c(2)(ν) c(3)(ν) c(4)(ν)

3 0
77

32
+

141

8
ν2 0

13937

128
ν +

7717

32
ν3

4
67

48
+

17

4
ν2 569

32
ν +

125

8
ν3 305141

9216
+

89165

384
ν2 3105983

2048
ν +

195755

64
ν3

+
17815

192
ν4 +

87549

128
ν5

5 0
190539

9216
+

132245

1152
ν2 0

2476272807

36864
ν +

3183085423

18432
ν3

+
10865

192
ν4 +

210012613

2304
ν5 +

14154617

1152
ν7

6
221

24
ν +

17

3
ν3 2283899

7680
ν +

38459

96
ν3 1642757413

64512
ν +

14725045

288
ν3 64522032953459

15728640
ν +

3084767116889

294912
ν3

+
10727

160
ν5 +

3442219

192
ν5 +

55747

42
ν7 +

2619604188383

491520
ν5 +

2484506287

3072
ν7

+
1217388017

36864
ν9

Therefore, the discontinuity along the realg axis is

1E = 2iImE(g) ∼ −i
2n

π1/2n!

(
2

g

)q(n+ 1
2 )

exp

[
−qB(q,

3
2)

(2g)q

] ∞∑
j=0

b(j)
(
n +

1

2

)
gj (44)

whereb(j)(n + 1
2) are the coefficients that result form multiplying out the two power series in

g whose lowest terms are given in tables 1 and 2:

∞∑
j=0

b(j)(n + 1
2)g

j = exp

[
−
∞∑
k=1

c(k)
(
n +

1

2

)
gk
]( ∞∑

k=0

dE(k)

dν

(
n +

1

2

)
gk
)
. (45)

Furthermore, substitution of the discontinuity in the asymptotic expansion of the eigenvalues
given by equation (44) into the dispersion relation ing2

E(k)(n + 1
2) =

1

π i

∫ ∞
0
1E(g)g−k−1 dg (k even) (46)

yields the large-order asymptotic behaviour of the RSPT coefficients

E(k)(n + 1
2) ∼ −

2n+k+q(2n+1)

qπ3/2n!

[
qB

(
q,

3

2

)]−(n+ 1
2 + k

q
)

×0
(
n +

1

2
+
k

q

)[ ∞∑
j=0

b(j)
(
n +

1

2

)[
qB

(
q,

3

2

)]j/q

×
0(n + 1

2 + k
q
− j

q
)

2j0(n + 1
2 + k

q
)

]
(k even). (47)

In fact, by the same parity argument mentioned above, the oddb(2j+1)(n+ 1
2) vanish, but again

we keep the general notation to compare later with the analogous equation for evenp.
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5. Modifications for p even

As we mentioned in the introduction, ifp is even we look for purely outgoing (or ingoing)
wavefunctions with well-defined parity. In this case, suitable even and odd Langer–Cherry
solutions around the origin can be written in terms of the confluent hypergeometric function
F(a; b; z) [20]

ψeven(z) = [u′(z)]−1/2e−u(z)
2/(2h)F ( 1

4 − ν
2; 1

2;h−1u(z)2) (48)

ψodd(z) = [u′(z)]−1/2u(z)e−u(z)
2/(2h)F ( 3

4 − ν
2; 3

2;h−1u(z)2) (49)

and these wavefunctions have to be matched to the Airy wavefunction (18) anchored to the outer
turning point. We only sketch the main steps of the derivation and give the results, because
the procedure is analogous to that in the previous section with two obvious modifications:
we have to use the Borel-summable asymptotic expansions for the confluent hypergeometric
functions [20], and it is necessary to deal separately withn = 2k andn = 2k + 1, although the
final results can be stated independently of the parity ofn.

For−2qπ < argh < 0 the matching is again trivial and yields justν = n + 1
2 and the

Borel summable RSPT (42) (note that, with our choice of Hamiltonian, forg negative we have
the typical alternating sign pattern of the Borel-summable series with real Borel sum), while
for sufficiently small argh > 0, and definingf (ν) exactly as in equation (35), the evenp
matching condition is

1ν = 1

π i
ln

[
1 +f

(
n +

1

2
+1ν

)]
(50)

the first exponentially small order solutions is

1ν = 1

π i
f

(
n +

1

2

)
(51)

and the discontinuity along the positive realg axis is

1E = 2iImE(g) ∼ −i
2n+1

π1/2n!

(
2

g

)q(n+ 1
2 )

exp

[
−qB(q,

3
2)

(2g)q

] ∞∑
j=0

b(j)
(
n +

1

2

)
gj . (52)

Finally, substituting equation (52) into the dispersion relation ing

E(k)(n + 1
2) =

1

2π i

∫ ∞
0
1E(g)g−k−1 dg (53)

yields the large-order asymptotic behaviour of the RSPT coefficients forp even

E(k)(n + 1
2) ∼ −

2n+k+q(2n+1)

qπ3/2n!

[
qB

(
q,

3

2

)]−(n+ 1
2 + k

q
)

0

(
n +

1

2
+
k

q

)
×
[ ∞∑
j=0

b(j)
(
n +

1

2

)[
qB

(
q,

3

2

)]j/q 0(n + 1
2 + k

q
− j

q
)

2j0(n + 1
2 + k

q
)

]
. (54)

We point out that this is the same result that we obtained for oddp except that now all the
E(k)(n+ 1

2) are different from zero. We also can read off from equation (54) the general formula
of the so-called Bender–Wu coefficients:

b(j)n = b(j)(n + 1
2)2
−j [qB(q, 3

2)]
j/q (55)

and (considering the values of the beta function as a function ofq) get a general proof of the
fact that they are rational numbers forp 6 4 and irrational forp > 4. By way of example,
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we give explicitly the particular result for the sextic anharmonic oscillator up toj = 1 in
equation (54):

E(k)(n + 1
2) ∼ −

24n+5k+5/2

πn+2k+2n!
0

(
n +

1

2
+ 2k

)
×
[

1− π
2

32

25
8 + 221

25 (n + 1
2) + 15

2 (n + 1
2)

2 + 17
3 (n + 1

2)
3

(n + 1
2 + 2k − 1)(n + 1

2 + 2k − 2)
+ · · ·

]
. (56)

6. Relation to the JWKB wavefunctions

In this section we discuss briefly the relation between the uniform asymptotic expansions of
the previous sections and the JWKB wavefunctions, and restate our matching procedure in
terms of loop integrals and Stokes multipliers.

First note that ifψ1(z) andψ2(z) are two linearly independent solutions of the differential
equation (4), then the ratio

r(z) = ψ1(z)

ψ2(z)
(57)

satisfies

{r, z} + 2

h2
(z2 − zp − 2hE) = 0. (58)

Since the Schwarzian derivative of the composition of two functions is [22]

{f ◦ g, z} = {g, z} + g′(z)2{f, g} (59)

it is straightforward to check that

S(z) = h

2
ln

[
ψ1(z)

ψ2(z)

]
(60)

is a solution of the simpler JWKB equation

S ′(z)2 = z2 − zp − 2hE +
h2

2
{S, z} (61)

that results from the substitution of

ψ(z) = [S ′(z)]−1/2 exp[S(z)/h] (62)

into the Schr̈odinger equation (4). Therefore we readily identify theu(z)-dependent part of
the exponential in the definition off (ν) (equation (35)) as an asymptotic expansion to twice
the actionS0(z) in the classically forbidden region:

S0(z) ∼ h

2
ln

[
u(z)νe−u(z)

2/(2h)
2F0(

1
4 − ν

2,
3
4 − ν

2; ;−hu(z)−2)

u(z)−νeu(z)2/(2h)2F0(
1
4 + ν

2,
3
4 + ν

2; ;hu(z)−2)

]
(63)

while thev(z) dependent part is also twice an asymptotic expansion of the JWKB actionS1(z)

in the classically forbidden region

S1(z) ∼ h

2
ln

[
e

2
3v(z)

3/2/h
2F0(

1
6,

5
6; ; 3

4hv(z)
−3/2)

e−
2
3v(z)

3/2/h
2F0(

1
6,

5
6; ;− 3

4hv(z)
−3/2)

]
. (64)

Although this is the most direct way to show the relation between uniform and our JWKB
wavefunctions, we would also like to mention that since

d

dz
ln

[
ψ2(z)

ψ1(z)

]
= W

ψ1(z)ψ2(z)
(65)
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whereW 6= 0 is the constant wronskian ofψ1(z) andψ2(z), therefore

ψ1,2(z) =
(
hW

2i

)1/2

[P(z)]−1/2 exp

[
± i

h

∫ z

P (t) dt

]
(66)

where

P(z) = hW

2i

1

ψ1(z)ψ2(z)
(67)

is a solution of

P(z)2 − (z2 − zp − 2hE)2 = h2

[
3

4

(
P ′(z)
P (z)

)2

− 1

2

P ′′(z)
P (z)

]
. (68)

Equation (66) is the ‘phase-integral’ form of the JWKB wavefunctions [3] and the relation
with our form is simplyS ′(z) = iP(z) but, as we will point out later, the main problem solved
by the matching procedure is precisely the calculation of the ‘integration constant’ in passing
from S ′(z) to S(z). (Calculations of Stokes multipliers within the phase-integral method can
be found in [3] for a cluster of two simple transition points, and in [23] forn > 2 simple
transition points lying symmetrically on a circle and one transition point of ordern− 2 in the
centre of the circle, although this latter case does not allow for an eigenvalue parameter.)

Our matching procedure consisted of two steps: first, to find the form of the polynomials
E(k)(ν), and second to find the form of the functionf (ν). The quantityν, which in our
formulation appears in the index of the parabolic cylinder function in equation (5), is trivially
related to the ‘monodromy exponents of the double turning point’ in the geometric terminology
of Delabaereet al [9]

s = −ν − 1
2 (69)

and is determined by the condition

1

2π i

∮
γ

S ′(z) dz = ν (70)

whereγ is a loop enclosing the origin. If we expandS ′(z) as a power series inh

S ′(z) =
∞∑
k=0

S ′k(z)h
k (71)

and solve forS ′k(z), the conditions

Resz=0S
′
0(z) = ν (72)

Resz=0S
′
k(z) = 0 (k = 1, 2, . . .) (73)

again yield the polynomialsE(k)(ν). This is in essence the calculational algorithm proposed
by Delabaereet al [9], although they work most of the time with the reverse series (s as a power
series inh whose coefficients are polynomials inE) and only at the moment of ‘quantization’
sets = n and solve for the RSPT series. Furthermore, we can write formally

f (ν) = (2π)1/2

0(ν + 1
2)

(
2

h

)ν
exp

[
2

h
(S0(z)− S1(z))

]
(74)

where the prefactor is the Stokes multiplier of [8–11]

(2π)1/2x−s−1/2

0(−s) (75)

with x = 2/h, and the exponentS0(z)− S1(z) has to be interpreted as the result of matching
two expressions of the same function (the JWKB action in the tunnelling region) with different
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integration constants, the difference being written as a power series inh. This calculation
corresponds to the JWKB tunnelling loop integral ‘pinched’ by the confluence of two turning
points, whose leading contribution is given by the Stokes multiplier and whose higher-order
terms are calculated by an ‘exact matching method’ described in [11] and essentially equivalent
to ours, except that again they work with the reverse series, they do not use a Langer–Cherry-
type uniform wavefunction but an Olver-type uniform wavefunction to get the leading order,
and they get the higher-order terms of a Leray–Gelfand expansion of the loop integral via a
Mellin transform introduced by Zinn–Justin (see again [11] and references therein).

The key point of our equations (63) and (64) is that by construction they have the correct
integration constants ‘built-in,’ inherited from the initial conditions imposed to the uniform
wavefunctions (8) and (20) respectively, and the matching algorithm is just a series expansion.
We finally note that the matching condition (40) can be formally written

1ν = 1

2π i
ln

[
1 + exp

(
1ν

∂

∂ν

)
f (ν)

]
ν=n+ 1

2

(76)

which is an instance of an ‘alien derivative’ equation in the terminology of [8–11].

7. Summary

In this paper we have built and matched uniform asymptotic expansions for the wavefunction
around the single and double turning points in the anharmonic oscillators with potentials
V (x) = 1

2x
2 − gxp. The wavefunction anchored at the double turning point at the origin is

taken as a Langer–Cherry expansion based on a parabolic cylinder function with an unspecified
indexν − 1

2, while the wavefunction anchored at the simple outer turning point is a similar
expansion based on an Airy function. Imposing appropriate initial conditions to these uniform
expansions yields a series that is formally the RSPT series, but withn + 1

2 replaced by the as
yet unspecified parameterν, and the matching condition is precisely an equation to determine
ν—an idea that can be traced to [19].

The main advantage of this approach is that it encodes the asymptotic solution of the
eigenvalue problem for the resonances in just two steps: the very simple calculation of the
RSPT power series as a polynomial inn + 1

2, and the more complicated but still algorithmic
determination of the polynomials appearing in the matching functionf (ν).

In fact, matching in a suitable sector of the complexg plane (which depends on the parity
of the perturbation) yieldsν = n + 1

2 and the Borel-summable RSPT series, while in the next
Riemann sheet yieldsν = n+ 1

2 +1ν with an explicit equation (40) or (50) for the determination
of 1ν.

We have solved the matching conditions to first exponentially small order, and given a
unified derivation of the asymptotic behaviour of the imaginary part of the resonances for all
these oscillators and, via dispersion relations, the corresponding asymptotic behaviour of the
RSPT coefficients.

Finally, we have discussed the relation between the uniform asymptotic and the JWKB
wavefunctions, and between our matching procedure and the matching in terms of Stokes
multipliers and JWKB loop integrals.

Particular cases (quartic [24], cubic [25] and sextic [26]) of the RSPT coefficients written
as polynomials inn or n + 1

2 had been discussed in different contexts, as well as the formal
relation between semiclassical methods and perturbation theory [26], but the analytic role of
the RSPT expansion (as a function of the parameterν) in the matching process, introduced
in [19] and applied in this paper, had not been clarified. As a future line of work we would like
also to mention the calculation and interpretation of higher exponentially small-order solutions
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to the matching condition, and the related study of other complex turning points which play a
role in the connection path.
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[19] Silverstone H J, Harris J G,̌Cížek J and Paldus J 1985Phys. Rev.A 321965
[20] Abramowitz M and Stegun I A 1972Handbook of Mathematical Functions(New York: Dover)
[21] Caliceti E 1999 Distributional Borel summability of odd anharmonic oscillatorsPreprintmath-ph/9910001
[22] Hille E 1997Ordinary Differential Equations in the Complex Domain(New York: Dover)
[23] Dzieciol A 1992J. Math. Phys.33840
[24] Alvarez G, Graffi S and Silverstone H J 1988Phys. Rev.A 381687
[25] Alvarez G 1989J. Phys. A: Math. Gen.22617
[26] Dobrovolska I V and Tutik R S 1999J. Phys. A: Math. Gen.32563


